News in Depth: Nuclear, the Next Generation

In our continuing effort to explore what’s next for nuclear, we turn this week to the recent announcement that China will begin construction on a 600 MWe fourth generation fast neutron reactor. While details of the project are few, there is speculation that this project may be the first successful partnership between China and TerraPower, the Washington state based energy firm founded and chaired by Microsoft co-founder and philanthropist Bill Gates.

In this week’s News in Depth, we will take a look at the technology behind fourth generation fast neutron reactors, the story of TerraPower, and China’s efforts to be at the forefront of nuclear energy development and deployment.

Next Generation Technology

As the World Nuclear Association (WNA) notes, fourth generation fast neutron reactors (FNRs) have been in development for decades. As of 2010, over 400 reactor-years of operation have been logged with approximately 20 reactors in different periods. The WNA also provides a useful summary of the initial motivation behind FNR tech:

The FNR was originally conceived to burn uranium more efficiently and thus extend the world’s uranium resources – it could do this by a factor of about 60. From the outset, nuclear scientists understood that today’s reactors fuelled essentially with U-235 exploited less than one percent of the energy potentially available from uranium. Early perceptions that those uranium resources were scarce caused several countries to embark upon extensive FBR [Fast Breeder Reactor] development programs.

The technology is incredibly complex, but for reference note that

Natural uranium contains about 0.7% U-235 and 99.3% U-238. In any reactor some of the U-238 component is turned into several isotopes of plutonium during its operation. Two of these, Pu-239 and Pu-241, then undergo fission in the same way as U-235 to produce heat. In a FNR this process is optimized so that it ‘breeds’ fuel. Some U-238 is burned directly with neutron energies above 1 MeV.

TerraPower‘s Travelling Wave Reactor (TWR) leverages the knowledge gained from decades of FNR research to produce what they describe as “Generation IV, liquid sodium-cooled fast reactor.”

TWR

Image Source: TerraPower

China’s New Project

According to the WNA, China first began research FNR reactors in 1964 and, in 2003, built “a 65 MWt fast neutron reactor – the Chinese Experimental Fast Reactor (CEFR) – … near Beijing [in partnership with] Russia’s OKBM Afrikantov [and] OKB Gidropress, NIKIET and Kurchatov Institute.”

This new project is part of China’s efforts to have, according to CIAE projections, fast reactor capacity progressively increasing from 2020 to at least 200 GWe by 2050, and 1400 GWe by 2100. As noted in the opening, TerraPower’s involvement in the project is still unconfirmed, but industry and media sources seem to be coalescing around such a partnership as Gates himself recently travelled in February of this year to China to meet with “with Nur Bekri, a vice chair of China’s National Development and Reform Commission, and with China National Nuclear Corp chairman Sun Qin.”

In any event, what we are seeing here are the early stages of what looks like a new phase in nuclear technology. 4th Generation reactors – in this case, sodium FNRs – have been in development for over a decade and now we are seeing an example of one of the these new designs taking shape. Development is slow, yes, but it is happening and happening at in increasing pace in China. We can only now wait to see what comes next and, hopefully, to see confirmation that this project marks the first partnership between China and Gate’s TerraPower.

 

News in Depth: Deploying SMR Technology in Canada’s Northern Communities

In mid-April, 2015, Peter Lang, President of Dunedin Energy Systems Ltd, gave a presentation at the Nunavut Mining Symposium, arguing for a radical shift in the way we provide energy to remote communities and mining operations. Traditionally, northern communities have relied upon diesel generators that produce substantial pollution and require costly infrastructure for fuel transport to maintain energy production.

Lang suggests a new approach, one that utilizes new, small modular reactor (SMR) technology to produce energy from floating nuclear power ships. In this week’s News in Depth, we explore Lang’s idea and the potential opportunities and challenges that are ahead.

An Old Idea Given New Life

As Lang noted in his presentation, the idea of utilizing nuclear reactors in unique contexts is not new: small, self-contained nuclear reactors have been providing energy on military ships and submarines (103 in the US Navy alone), and ice-breakers for decades and have been deployed in northern Russian communities since the 1970s.

Lang’s Dunedin Energy believes that their SMART (Small Modular Adaptable Reactor Technology) system would provide a more sustainable and consistent energy source for remote communities in Canada. They describe the systems as a “nuclear battery”:

When the fuel in a nuclear battery is consumed, the entire reactor module (which contains the spent fuel) is removed and shipped to a processing facility for fuel recycling. A new, freshly fuelled reactor module is installed to replace it. The reactor module is a sealed unit and cannot be opened for any reason at the operating site.

In his presentation, Lang compares diesel and nuclear, using a 16MWe common production rate. Notably, the annual fuel logistics of diesel include moving and storing over 31 million litres of fuel and annual greenhouse gas emissions are estimated to be 85,000 tonnes. Compare those figures to the zero fuel logistics and greenhouse gas emissions of their nuclear SMART system. Lang also highlights the issue of carbon taxes, arguing that while diesel may cost up to $1.2 Million for a 16MWe plant, a nuclear SMART reactor would gain a credit of $1.2 Million.

The Challenges Ahead

The incredibly favourable comparison above belies some of the deeper challenges that SMR development may face in northern communities.

The first set of challenges relate to cost and public resistance. Dunedin presents two business cases – a full-ownership option and a “zero-capital cost” option wherein Dunedin handles the operation and logistics of deployment, operation, and decommissioning, and the customer pays approximately 29 cents/kW in return.

However, northern communities and mine operators may be tempted to continue to rely on diesel – owing to the current low price of oil and, in essence, because of the stickiness of the status quo. In addition, northern communities, including many Aboriginal groups, continue to be locked in debates over energy development, mining, and socio-economic development; introducing any new nuclear energy plan may provide more fodder for political debate. Dunedin appears to be aware of these challenges and addresses the regulatory and safety issues on their website. However, as we suggested in a piece on April 23, better public engagement and education would be required to quell any genuine fears or uncertainty that exist.

Lastly, northern communities may demand a clearer set of guidelines and regulations relating to decommissioning and remediation. Lang noted in his presentation that decommissioning funds would be held in escrow, effectively guaranteeing that even if a community or mine is bankrupt, that the money for cleanup and restoration is not subject to claims by creditors or other parties. Dunedin’s approach is unique – in that the whole reactor-in-a-ship concept allows for relatively easy site cleanup – but questions still remain. How much would be necessary for cleanup? What does full restoration look like?

In other words, this ambitious idea is not without issues. However, there appear to be tremendous economic and environmental arguments in favour of SMR development in northern and remote communities. These arguments carry over to other contexts – including Mexico, for example – and may one day translate to a new energy future for Canada’s North.

US Deparement of Energy agrees to fund NuScale SMR to commercialization

The US Department of Energy (DOE) announced this week that it will invest $217 million over five years in the development and commercialization of the NuScale Small Modular Reactor (SMR).  The DOE expects their investment to be matched by private sector investment in the project.  NuScale intends to use the funds to test their reactor and to complete the process of certification through the Nuclear Regulatory Commission with hopes of having the first NuScale reactor online by 2023.

NuScale’s 45MW pressurized water reactor is a unique design making use of an unconventional fuel assembly which is passively cooled and more inherently safe than existing reactors.  In the event of an overheating, the reactor is designed to cool without any human input, without any additional water, and without electricity.  The NuScale SMR will be mass produced in a factory and shipped by truck, rail, or barge in sets of up to twelve for power stations between 45MW and 540MW.

Here, the Chief Commercial Officer of NuScale Power explains some of the benefits of a small modular reactor generally and the NuScale reactor specifically.

If NuScale is able to keep to its schedule for commercialization, it could play a major role in achieving US President Barack Obama’s recently stated goal of reducing the emissions of all US power plants 30% by 2013.

Source: http://www.world-nuclear-news.org/NN-Federal-funding-agreed-for-NuScale-2905144.html

General Fusion Lunch & Learn May 30, 2014

On May 30, 2014, OCI is hosting an event with Michael Delage and Alex Fallon of General Fusion.  General Fusion is a Canadian developer of nuclear fusion technology and was featured in last years Future of Nuclear conference.  This session will outline the supply chain opportunities with Canada’s leading nuclear fusion company.

Non-members can receive a 10% discount by using the discount code OCIGUEST when registering online.

To learn about the event, click here.

case-gfted

More on General Fusion…

“Established in 2002, General Fusion has grown to 65 employees and raised over $50M. The company is supported by leading energy venture capital funds and industry leaders, including: Sustainable Development Technology Canada, NRC-IRAP, Chrysalix Energy Venture Capital, Bezos Expeditions, Business Development Bank of Canada and Cenovus Energy. General Fusion is gathering global attention due to its progress with developing magnetized target fusion technology.

Fusion energy holds immense promise as a clean, safe and abundant energy source.  Fusion generates neither pollution nor greenhouse gases that drive climate change. Fusion energy is fueled by hydrogen isotopes, which are easily extracted from seawater. There is enough fusion fuel to power the planet for hundreds of millions of years.

As Canada explores its nuclear innovation strategy, fusion is gathering more attention. Recently, Jacques Besnainou, Former President & CEO of Areva Inc., joined the General Fusion Board of Directors. Fusion presents potentially huge opportunity for Canadian nuclear suppliers.  General Fusion is a private enterprise tightly focused on developing a commercial fusion reactor (100MW) and is on track to construct a fusion reactor alpha plant within four years.”

For more information: www.generalfusion.com

 

Nuclear Innovation announced as theme for Future of Nuclear 2014 Conference

In recent weeks, sources as diverse as the Intergovernmental Panel on Climate Change (IPCC), the Wall Street Journal, the New York Times and the Dalai Lama have all commented on the relentless growth of greenhouse gases (GHG) in the earth’s atmosphere and the need to mitigate resultant climate change effects.  In all instances the sources have talked about the need for nuclear energy to play an increased role in the global energy mix.  Along with renewable forms of energy such as wind and solar, together with innovations in smart grid and energy storage, leading thinkers believe there still may be a chance to rein in overall global warming before certain irreversible tipping points are reached.

In our post-Fukushima world many leading policy makers, politicians, and stakeholders are revisiting and reassessing the role that nuclear power can play in the global energy mix. What innovations have taken place since the Fukushima generation reactors were designed and deployed?  What innovations have there been in safety, regulation, and decommissioning?  Have there been advances in quantifying the risks and liabilities of nuclear projects?  What are the innovations and considerations in public policy, education and awareness that have prompted several jurisdictions to ramp up their nuclear programs?

On November 4, 2014, Mindfirst will host the second Future of Nuclear Conference that will address many of these questions. We are currently in the process of developing the agenda, content and speaker list.  Interested participants and potential speakers may contact admin@futureofnuclear.com.  Click here to view the agenda from last year’s Future of Nuclear conference.

Early bird registration is available at:
http://futureofnuclear2014.eventbrite.com

 

 

 

Robert Kennedy Jr. and Pandora’s Promise Director Robert Stone Debate Nuclear Energy

November 9, 2013 – Toronto, ON – Following the screening of Pandora’s Promise on CNN I was alerted to this debate between Robert Kennedy Jr. and Robert Stone on youtube. To see the debate click here.